Civil engineering is the application of science and technology to the planning, design, analysis, construction, operation, and maintenance of the physical facilities required by society. It is the broadest of all engineering professions, encompassing activities from aerospace to urban planning. Civil engineers are the fabricators of modern society and the protectors of our environment. They deal with people and their management, materials and their use, designs and their application, and the problems of interweaving these factors to serve society. Typical civil engineering projects include environmental facilities, such as systems for water quality control, toxic and hazardous waste control and stormwater networks; structures, such as high-rise buildings, bridges, off-shore platforms, shuttle launch pads, and dams; and transportation facilities, such as Intelligent Transportation Systems, airports, highways, and railways. Civil engineering has a long history and a bright future serving the basic needs of society.
Civil engineering graduates with a BS degree may opt for employment with high technology consulting firms; local, state, or federal governments; contractors or construction firms; public utilities; or industrial corporations. Another option is graduate school, where students pursue an area of specialty within civil engineering. Such studies open up more advanced employment opportunities in government, consulting, construction, or industry, and introduce new choices, including research and teaching. A civil engineering degree also provides a good background for professional training in law, business administration, or medicine.
Detailed degree requirements are posted on the Civil Engineering web site, http://www.ce.virginia.edu/
Research Centers and Institutes
Interdisciplinary research is carried out through research centers, laboratories, and consortia in which graduate students in two or more disciplines work together on a research project.
Advanced Materials and Structures Laboratory conducts thermomechanical testing with an emphasis on multi-scale approaches that establish connections between size-scale and thermomechanical performance of materials and structures. Together with conventional macroscale materials testing, this facility has a state-of-the-art nano-indentation system that allows mechanical testing on length-scales spanning from nanometers to millimeters. This system has force resolution on the order of one billionth of a Newton, and displacement resolution on the order of one angstrom; a unique capability is an environmental temperature chamber, which enables testing in the range of -50 oC to 100 oC. Current research is directed towards establishing connections between nanoscale material features and thermomechanical stability in thin films and MEMS, with an emphasis on compliant materials such as nano-porous ceramics and polymers.
Smart Travel Lab is a state-of-the-art facility of the Center for Transportation Studies that supports research and education in the rapidly emerging area of intelligent transportation systems (ITS). Using the latest information technologies and analysis and modeling techniques, researchers in the lab are developing prototype systems and applications that promise to improve the effectiveness of ITS. The distinguishing characteristic of the lab is the direct connection established between the lab and transportation management systems operated throughout the Commonwealth of Virginia. This connection provides researchers with direct access to real ITS data and systems.
Center for Transportation Studies focuses on issues and problems related to the development, operation, and maintenance of a safe, efficient intermodal transportation system for the Commonwealth of Virginia and the nation. The Center’s research program is noted for being responsive to emerging challenges from the transportation sector and for continually probing into new areas of transportation-related research, like intelligent transportation systems, traffic simulation studies, applications of geographic information systems in facilitating transportation planning and management, and decision support systems using artificial intelligence.
Program Objectives
- To provide graduates with the technical competencies and insight necessary to practice civil engineering and have an impact on the profession.
- To provide a solid foundation for successful study at leading graduate and professional institutions.
- To promote a breadth of abilities and knowledge, including quantitative and analytical skills, communication skills and social insight, to allow graduates to pursue careers in a diversity of fields including engineering, business, management, and information technology.
- To prepare graduates for a lifetime of learning, for leadership, and for service to the profession and society.