|
Undergraduate Record 2023-2024 [ARCHIVED RECORD]
Chemical Engineering
|
|
Return to: School of Engineering and Applied Science: Degree Programs
Chemical engineering involves the application of mathematics, chemistry, physics and other sciences, such as biology and data science, to develop economic ways of using materials and energy for the benefit of humankind. Chemical engineers are involved in developing, processing, and marketing such varied products as fuels, pharmaceuticals, foods, plastics, metals, microelectronics, and basic chemicals.
The Chemical Engineering program educational objective is as follows:
Graduates of the Chemical Engineering program at the University of Virginia will utilize their technical competency breadth of knowledge, communication and teamwork skills, and adaptability to serve effectively and ethically in the chemical engineering profession; to become technical leaders in industry, government or academia; or to pursue advanced study in engineering and applied sciences and in professions such as law, business, and medicine.
Our student outcomes are as follows. At graduation, ChE students are expected to have:
- An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- An ability to apply engineering design to produce solutions that meet specified needs with consideration for public health, safety, and welfare as well as global, cultural, social, environmental, and economic factors.
- An ability to communicate effectively with a range of audiences.
- An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
Many chemical engineers serve in the traditional chemical process industries of fuels, food and consumer products, chemicals, paper, pharmaceuticals, and plastics. Some develop new products or processes through research, while others carry out the pilot studies and design work needed to bring innovations from the laboratory to manufacturing operations. Many are engaged in the operation and management of process plants including areas related to process safety risk management, and environmental health and safety. Others are in marketing and developing new applications for chemical products and serve as data analysts or as consultants in technical and financial sectors. Often a chemical engineer moves from one function to another. Chemical engineers have long aided in energy and materials production from oil, gas, and coal. Today they are also heavily involved in research, development, and production of energy from alternative renewable resources. Similarly, their chemical expertise and broad knowledge of processes are valuable in the identification and control of environmental problems, in health care, pharmaceuticals, and biotechnology, and in areas such as electronic materials production and nanotechnology. A chemical engineer’s career path is varied and rewarding, allowing individual talents to grow and be fully utilized.
In preparation for professional careers and graduate school, undergraduate studies for the B.S. degree in Chemical Engineering have a strong foundation in both science and engineering. The curriculum progresses from mathematics and basic sciences (with an emphasis on chemistry), through engineering sciences, to applications in chemical process analysis, and culminates in a capstone design project. Computer methods, laboratory techniques, open-ended problem solving, team approaches, and effective written and oral communication are emphasized throughout the program. Elective courses permit minors or concentrations in diverse technical and non-technical areas; recent students have completed minors in many other engineering and science disciplines, in business, and in many different humanities and liberal arts programs. Students in the ChE program not only develop technical capability, but also learn to consider the safety, environmental, ethical, cultural, and economic dimensions of technological activities.
|
Minimum Grade Requirements for ChE Prerequisite Courses
A grade of C- is the standard required in core CHE courses that are prerequisites for other CHE courses. Students cannot have more than one passing grade of less than C- in core CHE prerequisite courses in order to enroll in any subsequent CHE courses. Students with more than one grade below C- in more than one core CHE prerequisite course (CHE 2202, 2215, 2215, 3316, 3318, 3321, 3322, 3398, 4474 and 4475) will have to retake the prerequisite(s) and receive a grade of C- or higher before taking any subsequent CHE courses. This policy applies to student pursuing a B.S. in chemical engineering and to students pursuing a minor in chemical engineering.
First-Year and Second-Year Program
Chemical engineering students take two-semesters of general chemistry with the standard first-year program. Because of varied individual long-term goals and the many options available in the chemical engineering program, consultation with a CHE advisor in the first semester of studies is strongly recommended. For example, the second semester chemistry course and laboratory are required for CHE majors and should be taken during the first year. Further, those planning on medical school should schedule a full year of biology, including laboratories.
Chemical Engineering Curriculum (128 Credits)
First Semester Credits: 15
Second Semester Credits: 18
Third Semester Credits: 17
Fourth Semester Credits: 16
Fifth Semester Credits: 16
Sixth Semester Credits: 16
Seventh Semester Credits: 15
Eighth Semester Credits: 15
Footnotes
(1) HSS Electives: chosen from the approved list available in A122 Thornton Hall or from the SEAS website.
(2) Technical electives: Any 2000 to 5999 course in: APMA, MATH, CHEM, PHYS, BIOL, BIOM, CHE (other than required courses), ENGR 4880, CE, CS, ECE (except ECE 2066), MSE (except MSE 2010), MAE, SYS plus ENVS 2050, 2800, 3200, 3600, 3860, 4280, 4640, 4660, 4090. Special Topics and Special Projects courses as well as other courses introduced after the 2011-12 academic year must be individually approved.
(3) Engineering elective: Students must complete one course with substantial engineering content. The list of acceptable choices can be obtained from the department office or through the ‘Academic Requirements’ page on SIS.
(4) Unrestricted electives: Chosen from any graded course in the University except mathematics courses below MATH 1310 and courses that substantially duplicate any others offered for the degree, including PHYS 2010, 2020; CS 1010, 1020; or any introductory programming course. Students in doubt as to what is acceptable to satisfy a degree requirement should get the approval of their advisor and the dean’s office, located in Thornton Hall, Room A122. If APMA 1090 is taken as part of mathematics sequence, it counts as an unrestricted elective.
(5) CHE Electives: Chosen from CHE 3347, CHE 4442, CHE 4445, CHE 4448, CHE 4449, CHE 4450, CHE 4452, CHE 4456, CHE 4561*, CHE 4562* (*courses listed under this special topics designation must be individually approved)
(6) Chosen from ECE 2200 (4 credits) or PHYS 2415 (3 credits) and PHYS 2419 (1 credit).
Concentration in Biotechnology
A concentration in Biotechnology prepares chemical engineering students for careers with biotechnology and pharmaceutical companies and for further graduate studies in these areas. The concentration consists of four electives:
Concentration in Biotechnology and Biochemical Engineering
A concentration in Biotechnology and Biochemical Engineering prepares chemical engineering students for careers with biotechnology and pharmaceutical companies and for further graduate studies in these areas. The concentration consists of four electives: CHE 2246 - Introduction to Biotechnology, CHE 3347 - Biochemical Engineering, CHE 4448 – Bioseparations Engineering, and CHE 4456 - Bioproduct and Bioprocess Engineering. Additional bioscience or bioengineering elective courses may be taken from a list available in the department.
Concentration in Data Analytics in Chemical Engineering
A concentration in Data Analytics prepares chemical engineering students for careers with a focus in data analytics and/or data science. It also prepares students for further graduate studies in areas related to data analytics and/or data science. The concentration consists of four electives:
Minor in Chemical Engineering
A minor in chemical engineering consists of: Public Professional Licensure Disclosure
As a member of the State Authorizations Reciprocity Agreement, the University of Virginia (UVA) is authorized to provide curriculum in a distance learning environment to students located in all states in the United States except for California. (34 CFR 668.43(a)(6)& 34 CFR 668.72(n)).
Upon completion of the Bachelor of Science in Chemical Engineering at the UVA School of Engineering, graduates may be eligible for initial professional licensure in another U.S. state by applying to the licensing board or agency in that state.
Please visit the University’s state authorization web pages to make an informed decision regarding which states’ educational requirements for initial licensure are met by this program. (668.43(a)(5) (v)(A) - (C))
Enrolled students who change their current (or mailing) address to a state other than Virginia should update this information immediately in the Student Information System as it may impact their ability to complete internship, practicum, or clinical hours, use Title IV funds, or meet licensure or certification requirements in the new state. (34 CFR 668.402).
|
|
|